
 

0 
 

 

 

 

 

  

NICE Workshop 

2015  

 

Summary Report from  

2015 Neuro-Inspired Computational Elements (NICE) Workshop 

Information Processing and Computation Systems beyond  

von Neumann/Turing Architecture and Moore’s Law Limits 

http://nice.sandia.gov 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a 

wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear 

Security Administration under contract DE-AC04-94AL85000. 

SAND2015-2241R



 

1 
 

 

 

 

 

2015 Neuro-Inspired Computational Elements Workshop: 

 Information Processing and Computation Systems beyond von Neumann/Turing 

Architecture and Moore’s Law Limits 

Hosted by Sandia National Laboratories 

February 23-25, 2015 

 

Workshop Advisory Committee 

Dan Hammerstrom (DARPA) 

Karlheinz Meier (EU HBP, University of Heidelberg) 

R. Jacob Vogelstein (IARPA) 

Robinson Pino (DOE Office of Science) 

 
Workshop Organizing Committee 

Murat Okandan (Sandia National Laboratories) 

James Bradley Aimone (Sandia National Laboratories) 

 
Workshop and Presentation Material 

All presentation material from the Workshop can be found at nice.sandia.gov. 

 
Special Acknowledgements 

Linda Wood, Event Organization 

Daniel Grubbs, Workshop Report Editor 

 

 

Event Sponsors 

 

 

 



 

2 
 

Table of Contents 

1. Executive Summary ............................................................................................................................................... 1 

2. Summary of Findings ............................................................................................................................................ 2 

3. Recommendations ................................................................................................................................................. 3 

1. Introduction ............................................................................................................................................................. 4 

1.1 Workshop Introduction .............................................................................................................................. 4 

1.2 DOE Context ................................................................................................................................................... 5 

1.2.1 DOE Strategic Plan .............................................................................................................................. 5 

1.2.2 The Advanced Scientific Computing Research Program ...................................................... 5 

2. Application Areas ................................................................................................................................................... 6 

2.1 High Performance Computing/Hybrid Architectures ..................................................................... 6 

2.2 Robotics/control systems .......................................................................................................................... 6 

2.3 Big Data/High Velocity Data, Internet-of-Things ............................................................................. 7 

2.4 Cyber ................................................................................................................................................................. 7 

2.5 Neural architecture, theory and algorithm exploration ................................................................. 7 

3. Technical Approaches .......................................................................................................................................... 7 

3.1 Software implementation (conventional hardware) ........................................................................ 7 

3.2 Combined software/improved architecture (new devices) ........................................................... 7 

3.3 Novel Architectures ...................................................................................................................................... 8 

4. Pathways and Resources ..................................................................................................................................... 8 

4.1 Large Scale Programs (BRAIN Initiative, EU HBP) ............................................................................. 8 

4.2 New Research Projects / Institutional Level ........................................................................................ 8 

4.3 Commercial Development/Evaluation .................................................................................................. 9 

Appendix A: List of Presentations .......................................................................................................................... 10 

Appendix B: List of Registered Attendees .......................................................................................................... 11 

Appendix C: Workshop Agenda ............................................................................................................................. 14 

Appendix D:  Presentation Abstracts .................................................................................................................... 15 

Appendix E: Website Data for nice.sandia.gov ................................................................................................. 27 

  



 

1 
 

1. Executive Summary  

The third Neuro-Inspired Computational Elements (NICE) Workshop was held February 23-25, 2015 in 

Albuquerque, New Mexico. The goal of the Workshop was to bring together researchers from different 

scientific disciplines and application areas to provide a common point from which to develop the next 

generation of information processing/computing architectures that go beyond stored program 

architecture and Moore’s Law limits. 

Conventional, stored program architecture systems are designed for algorithmic and exact calculations. 

Many high impact problems, however, involve large, noisy, incomplete, “natural” data sets that do not 

lend themselves to convenient solutions from current systems. This Workshop series has focused on 

addressing these problems by building upon the convergence among neuroscience, microelectronics, 

and computational systems to develop new architectures designed to handle these natural data sets. An 

international group of nearly 100 registered attendees with a wide range of expertise and experience 

(e.g., neuroscience, systems, microelectronics, applications, and potential funding agencies) participated 

in this year’s event by offering knowledgeable insight regarding: 

 Applications that look for solutions beyond the capabilities of current computational systems 

 Technical approaches that are at the early to middle stages of development for new 

computational systems 

 Pathways and resources to accelerate the development of these new systems 

A specific focus for this year’s Workshop was the value proposition for neuro-inspired/neuromorphic 

computing: what these systems offer, or may offer, that exceeds the current and forecasted capabilities 

of conventional computing approaches. The speakers were requested to address this specific point in 

relation to their work and offer their views on potential next steps. Information from the speakers, 

combined with interactions and discussions with the broader set of Workshop participants, has led to 

the identification of a key finding and a key recommendation. 

Key Finding ‒ Neuro-inspired/neuromorphic systems could provide value in two, tightly coupled 

tracks: 1) as a new approach for analyzing, making sense of data, and predicting and controlling systems, 

2) as a platform for understanding neural systems and testing hypotheses generated by neuroscience. 

Key Recommendation ‒ For both conventional computing and emerging approaches, a coordinated 

effort across multiple disciplines and application areas is needed to:  

1. Establish appropriate metrics, 

2. Develop performance parameters with specific application cases to evaluate current systems,  

3. Support future development of neuro-inspired/neuromorphic systems. 

This report provides a concise summary of the highlights of the Workshop, key findings, and 

recommendations for next steps in the context of DOE Office of Science goals and objectives.  
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2. Summary of Findings  

The Workshop concluded with a breakout session at which participants discussed and helped articulate 

the most pertinent findings from the presentations and discussions. The results of this session shaped 

the following list of eight key findings: 

Finding 1‒ Neuro-inspired/neuromorphic systems could provide value in two, tightly coupled tracks: 1) 

as a new approach for analyzing, making sense of data, and predicting and controlling systems, 2) as a 

platform for understanding neural systems and testing hypotheses generated by neuroscience. 

Finding 2– Increasingly, the level of interest in brain-inspired computing approaches is moving beyond 

academic circles to broader government and industrial communities. 

Finding 3‒ Large-scale projects and programs are underway in neuroscience, scientific computing, 

neural algorithm discovery, and hardware development and operation; and there is early interest in 

application metrics/definition for future systems evaluation. 

Finding 4‒ Although current machine learning and other neuro- or bio-inspired systems have 

demonstrated valuable functions, further developments are necessary to achieve the higher levels of 

functionality desired for wider-spectrum applications. 

Finding 5‒ High throughput techniques in experimental neuroscience are helping influence more 

advanced computational theories of neural function, but the community’s capability to translate these 

computational neuroscience concepts into real mathematical theories and application-useful algorithms 

is still immature. 

Finding 6‒ Notable unresolved questions still facing the community include the level of neurobiological 

fidelity necessary for application impact, the necessity of future biological knowledge from 

experimentation to achieve neural computing’s goals, and the best strategies for achieving learning 

(both theoretically and in real systems).   

Finding 7‒ The community appears to be approaching a general consensus that spike-based 

computation provides real, differentiating advantages over classic digital or analog approaches.   

Finding 8‒ There are several theories and frameworks, each of which were presented at the Workshop, 

that are ready for implementation (HTM, stochastic computing, Leabra, Spaun, and others) on emerging 

neuromorphic/neuro-inspired computing platforms. 
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3. Recommendations  

Relative to the key findings described above, and based on participant input during the breakout 

session, this report offers several recommendations for leveraging capabilities and investments to 

collectively advance the development and application of neuro-inspired/neuromorphic systems. 

Recommendation 1 ‒ Establish a coordinated effort.   

For both conventional computing and emerging approaches, a coordinated effort across multiple 
disciplines and application areas is needed to 1) establish appropriate metrics, 2) develop performance 
parameters with specific application cases to evaluate current systems, and 3) support future 
development of neuro-inspired/neuromorphic systems. 

Recommendation 2 ‒ Maintain the multi-disciplinary nature of NICE Workshops.  

While seeing details of experimental neuroscience is not immediately useful to applications and seeing 
microelectronic device power consumption metrics are not critical for colleagues involved in biological 
experiments, having the visibility across the full spectrum is necessary and should be maintained in 
future NICE Workshops. 

Recommendation 3 ‒ Use neuro-inspired platforms to develop, test, and refine theories, 

algorithms and systems.   

Current and emerging neuro-inspired platforms appear to have value today and should be used to help 
construct, test, verify and refine new theories from neuroscience and new approaches such as stochastic 
computing and machine learning.  Likewise, there is value in developing novel hardware platforms, 
particularly those that incorporate online plasticity and low energy communication strategies. 

Recommendation 4 ‒ Quantify and communicate the value proposition.  

The perceived value of applying existing neural algorithm frameworks to real-world applications should 
be quantified and communicated broadly. However, it is important to acknowledge that these are only 
the “tip of the iceberg” in neural algorithms, and the development of new neural algorithms from the 
community’s growing knowledge of neuroscience is critical. 

Recommendation 5 ‒ Demonstrate specific application cases. 

The community needs to develop a stronger application story. In lieu of the ‘killer app,’ which is not 
clearly visible or readily defined for neural-inspired systems today, the community should be actively 
developing clear application examples that demonstrate capabilities beyond current conventional 
computing approaches. 

Recommendation 6 ‒ Develop stronger mathematical neural theory. 

Stronger mathematical neural theory is required. Improvements in this field will facilitate the transition 
of conceptual or simulation based computational neuroscience theories to application-useful machine 
learning tools.  
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1. Introduction  

1.1 Workshop Introduction 

The NICE Workshop has been held for the last 3 years (2013-2015) with the goal of bringing together 

scientists, engineers and stakeholders from a wide spectrum—ranging from experimental neuroscience, 

computational neuroscience, algorithms, high performance computing, hardware and all the way to 

applications. In all technological development timelines, including microelectronics and computers, a 

critical need has driven and funded the early stages of development. In the case of microelectronics, it 

was the navigation and guidance needs of defense systems, while in the case of computers, it was the 

neutron diffusion simulations and weather prediction and forecasting needs that provided the “killer 

app.” Such clear application cases are not currently defined for neuro-inspired/neuromorphic computing 

approaches, but may become more obvious once current projects gain further traction. The NICE 

Workshop community has seen and felt the need to articulate clearly the “value proposition” of this 

new approach. As a result, there are significant efforts to provide the metrics, comparison cases, and 

application examples to support further development of the science, technology, and ecosystem around 

this activity. NICE has succeeded in achieving its initial goal of providing a “nucleation point” for these 

discussions. Continuing the Workshop series will help achieve ancillary goals by accelerating current 

activities and supporting project and program development for neuro-inspired/neuromorphic 

computing. The intended result is the development of solutions for critical applications that might not 

be feasible within the current computing paradigm. 

Several application areas, distinct technical approaches and technology development paths were 

identified during the presentations and discussions at this year’s Workshop. The body of this document 

is structured to provide additional insight within each of these categories. Figure 1 summarizes some of 

the interactions across the categories. Further detailed information can be found at nice.sandia.gov.  

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 1 – A wide spectrum of highly interdependent scientific and technical disciplines are at the core of neuro-
inspired/neuromorphic computing approaches and applications, all of which were represented at the 2015 NICE 
Workshop. These disciplines interact at relatively local scales, but a process for transitioning knowledge across 
disciplines appears to be maturing. The Workshop has a goal of furthering this process to influence and provide 
critical, longer-range interactions. 

http://nice.sandia.gov/
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“We must ensure that DOE continues to lead 

basic research in the physical sciences, develop 

the next generation of computation technology, 

and develop and maintain world-class scientific 

user facilities.”  
 

– US Secretary of Energy Ernest Moniz1 

 

1.2 DOE Context 

The NICE Workshop is motivated not only by the advancement of understanding of next generation 

information processing/computing architectures, but also by contributions to DOE strategic goals 

through the identification of applications, approaches, and resources that would benefit from 

accelerated development of these new architectures and systems. The Workshop supports specific 

objectives of DOE’s Strategic Plan (2014-2018) and challenges being addressed by the Advanced 

Scientific Computing Research program.  

1.2.1 DOE Strategic Plan 

DOE’s most recent strategic plan (March 2014) 

offers twelve strategic objectives related to high-

level goals in the areas of: 1) Science and Energy, 

2) Nuclear Security, and 3) Management and 

Performance. Strategic Objective 3 within the 

Science and Energy goal is intended to “deliver 

the scientific discoveries and major scientific 

tools that transform our understanding of nature and strengthen the connection between advances in 

fundamental science and technology innovation.”1 One of DOE’s stated strategies to accomplish this 

objective is to “pursue scientific discoveries that lay the technological foundation to extend our 

understanding of nature and create new technologies that support DOE’s energy, environment, and 

security missions.” Achieving these discoveries will, in many cases, require new computing architectures 

that overcome challenges in analyzing massive, natural datasets. The critical contributions from these 

architectures are recognized through the objective’s concentration on “advanced scientific computing to 

analyze, model, simulate, and predict complex phenomena.”  

1.2.2 The Advanced Scientific Computing Research Program 

Relative to DOE’s concentration areas for Strategic Objective 3, the Advanced Scientific Computing 

Research (ASCR) program has a goal to “discover, develop, and deploy computational and networking 

capabilities to analyze, model, simulate, and predict complex phenomena important to DOE.”2 For 

decades, ASCR and its predecessor programs have enabled scientists to gain new insights into technical 

challenges through advancements in applied mathematics and computer science research. The program 

continues to focus research efforts in these areas, as well as in next generation networking and scientific 

discovery through advanced computing (SciDAC).  

 

Some of today’s high impact technical challenges deal with large, natural data sets that make 

experiments nearly impossible or inordinately costly on current systems. For such challenges, ASCR 

seeks to develop exascale computing capabilities that “enable the solution of vastly more accurate 

                                                           
1
 http://www.energy.gov/sites/prod/files/2014/04/f14/2014_dept_energy_strategic_plan.pdf 

2
 http://science.energy.gov/ascr/about/ 
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predictive models and the analysis of massive quantities of data, producing advances in areas of science 

and technology that are essential to DOE and Office of Science missions and, in the hands of the private 

sector, drive U.S. competitiveness.”3 ASCR has begun investing in solutions to these challenges which, 

when achieved, will “result in not only exascale systems but also in affordable, energy efficient petascale 

systems and high-end desktops.”4 In addition, a recent report created by the Advanced Scientific 

Computing Advisory Committee (ASCAC) Data Subcommittee highlights “data challenges arising in 

multiple science domains.”5 The following excerpt describes one of the stated exascale computing 

challenges related to biology and genomics: 

 

“… perhaps most importantly, to learn how nature's design of a biologically-based knowledge machine 
beats all estimates for low power systems to compute or store information when compared to even the 
most power efficient hardware systems being conceived for the future.”6 
 
 

2. Application Areas  

2.1 High Performance Computing/Hybrid Architectures 

One of the critical application areas for new computing architectures is in High Performance Computing 

(HPC) which envisions extremely large data sets and increasingly harder problems for the next 

generation of computing systems (i.e., Exascale). An interesting concept, which has been discussed at 

this Workshop and other new computing technology-related venues is a hybrid approach, where the 

neuro-inspired systems can perform the functions that are too costly (in terms of energy, time and 

hardware) in conjunction with conventional computing systems that are specifically designed for 

numerical computation tasks. Such accelerators could be embedded in an HPC system to support the 

discovery and analysis tasks at higher energy-efficiency levels than a conventional system would be able 

to achieve by itself. 

2.2 Robotics/control systems 

Next-generation microelectronic devices have enabled robotics (UAVs, industrial robots, self driving 

vehicles, etc.) to steadily increase their functionality and flexibility. Despite these improvements, the 

higher level functions are still performed by a human supervisor, usually necessitating a bi-directional 

high bandwidth data link between the platform and the supervisor or on-board personnel. While this 

can be accommodated in certain situations, availability of a higher functioning, self-contained, semi-

autonomous system would greatly change the utilization scenarios in many use cases. Energy efficiency, 

real-time functionality and physical footprint of the systems are of critical concern on most applications 

where power, space, and response time are at a premium. 

                                                           
3
 http://science.energy.gov/ascr/about/ 

4
 http://science.energy.gov/ascr/about/ 

5
 http://science.energy.gov/ascr/about/ 

6
 http://science.energy.gov/~/media/40749FD92B58438594256267425C4AD1.ashx 
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2.3 Big Data/High Velocity Data, Internet-of-Things 

In many of the current consumer-facing and enterprise applications, data volume and the rate of data 

processing have stretched conventional computing resources to the limits. Especially in applications 

where the “sense-making” of the data analysis is not clearly defined or available, there is an opportunity 

for new approaches that can detect patterns and anomalies and guide further analysis by other, 

conventional means. In some scientific experiments, the data volume has been pre-compressed due to 

sensor characteristics or pre-processing algorithms. These endeavors could also benefit from a new 

approach to collecting, analyzing and interpreting the physical mechanisms underlying the observations, 

rather than relying on pre-determined compression, filtering, and analysis approaches. 

2.4 Cyber 

Cyber security is an example of a critical problem with extremely high data rates and volumes. New 

computational approaches could have immediate, high impact in this domain. Many current network 

management and cyber security protocols are reactionary: after an intrusion or problem is detected and 

analyzed, a countermeasure can be developed and deployed. A higher level of functionality in anomaly 

detection and the ability to correlate multiple, seemingly unrelated features without being specifically 

programmed to do so could enable new approaches for the management and maintenance of networks 

at varying scales of deployment. 

2.5 Neural architecture, theory and algorithm exploration 

As discussed in great depth at the Workshop, the datasets and experimental findings in neuroscience 

are vast, and not always well linked. The ability to formulate, test, verify, or disprove theories around 

neural circuits, computation and other scientific questions with the current and emerging neuro-

inspired/neuromorphic platforms at large scales (time, populations, variations in parameters, etc.) 

would be a critical capability which does not currently exist. Using these results to formulate better 

brain-machine interfaces, neural prosthesis, and medical treatments is a worthy goal. 

3. Technical Approaches  

3.1 Software implementation (conventional hardware) 

Many of the current approaches to neuro-inspired computing (convolutional networks‒machine 

learning, Hierarchical Temporal Memory or HTM, Leabra, Spaun) are implemented in software, on 

conventional computing resources. This implementation provides the highest level of flexibility and 

accessibility for the evaluation and further development of current approaches. The time required to 

perform the simulations or learning cycles, however, tend to be 10-100x slower than real time. Great 

results from software implementation are also informing the technical approaches that follow within 

this section of the report. 

3.2 Combined software/improved architecture (new devices) 

Systems specifically designed and constructed to simulate and study neural circuits (SpiNNaker, 

BrainScaleS, Neurogrid, Field-Programmable Analog Arrays, IFAT, etc.) have been under development 
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for around a decade, or longer. These systems provide significant improvements in certain metrics 

(energy efficiency, time to execute/model, biological realism) but give up some of the flexibility and 

familiarity that is available in the software based approaches. Workshop participants acknowledged that 

these systems are poised for large scale simulations and evaluation of theories, frameworks, and 

algorithms generated by the community. These systems will also help to accelerate the discovery and 

development of the next generation of computing, control, and analysis systems, and be the testing 

ground for new directions in neuroscience. 

3.3 Novel Architectures 

It might be possible to implement (in hardware) a completely new way of representing, processing, 

storing and recalling information, based on the spatio-temproral, sparse, hierarchical features of spiking 

neural networks. These systems are further away from the conventional, symbolic computation model 

but could be the key to breaking through some conventional computing barriers. Other technical 

approaches will critically inform how such systems can be built, optimized and utilized in a wide variety 

of applications. One distinct feature is the absence of a clear “hardware/software” division. While there 

will still be digital, analog, electronic, optical and/or other novel devices that can be locally programmed 

and inspected (“peek and poke”), operation and functionality of the complete system will require new 

tools, metrics, and interfaces. 

4. Pathways and Resources  

4.1 Large Scale Programs (BRAIN Initiative, EU HBP) 

Several existing large, multi-national programs are supporting a cross-cutting assembly of scientific fields 

including neuroscience and neuromorphic computing. Applications are generally viewed as a later-stage 

product of this activity, with scientific output being the primary goal. The interactions at the NICE 

Workshop fostered new connections and strengthened existing collaborations. A sense of new, 

unexplored areas and great potential was tempered with a warning of previous epochs, “Third Wave of 

…” (Neural Networks, Neuromorphic Computing, and New Computing Paradigm). Large scale efforts in 

the 1970s, ‘80s and following decades, which attempted to achieve higher levels of functionality than 

contemporary computers created the foundation for current efforts. A potential development path 

around high performance computing activities was also presented, which would further support activity 

in neuro-inspired/neuromorphic computing and provide specific application goals and metrics to drive 

development efforts. 

4.2 New Research Projects / Institutional Level 

Many universities, research organizations, and foundations have increased their levels of activity in 

neuroscience and related disciplines including neuro-inspired/neuromorphic computing, with some 

focusing on more of the early, scientific goals and others positioning themselves in various intersections 

of the wide spectrum of involved disciplines. There is a high level of interest in neuroscience and 

neuro/bio-inspired themes in the academic realm, evidenced by numbers of both faculty and students 

who are getting involved, as well as by expressions of interest by active researchers.  
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4.3 Commercial Development/Evaluation 

In the commercial sector, organizations that routinely handle large volumes of data and derive value 

from processing, storing and analyzing these data sets, and providers of systems that enable this activity 

have been actively exploring alternative computing approaches. Machine learning and associated 

activity has been a great example of new functionality that was enabled by increasing computing power 

that, in turn, has provided improved methods to analyze data. No clear candidate for next-generation 

devices or architectures yet exists to supplement or replace conventional computing and CMOS 

microelectronics; early evaluation is valuable to both the systems manufacturers and service providers. 

We expect this “pre-competitive” arena will become even more valuable and could see increasing 

support and activity related to commercial development.    
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Appendix D:  Presentation Abstracts 

Brad Aimone, Sandia National Laboratories 

Adaptive Neural Algorithms: the What, Why, and How 

Arguably, the aspect of true biological neural computation that is least captured by modern machine 

learning methods is, ironically, the ability to learn continuously.  There are a number of reasons that 

methods in online learning have been slow to materialize, ranging from the application demand to high 

costs of software or hardware implementation.  However, I contend that the biggest challenge to online 

learning is the lack of a strong theoretical approach for incorporating new information into existing 

models.  Although existing methods struggle with the prospects of incorporating novel information, the 

brain’s ability to learn provides us with a blueprint from which to develop new strategies for continuous 

adaptation.  My talk summarizes some lessons from observing different neural systems and their 

different learning strategies, with particular emphasis on the variability of neural learning mechanisms 

and the fact that learning in neural circuits is often specifically suited to the overall region’s functions. 

Kristofor D. Carlson, UC Irvine 

Large-Scale, Biologically Detailed Neuromorphic Networks: Taming the Beast 

Neuromorphic engineering takes inspiration from biology to design brain-like systems that are 

extremely low-power, fault-tolerant, and capable of adaptation to complex environments. The design of 

these artificial nervous systems involves both the development of neuromorphic hardware devices and 

the development neuromorphic simulation tools. In this presentation, I describe CARLsim, a simulation 

environment developed by our group that can be used to design, construct, and run spiking neural 

networks (SNNs) quickly and efficiently using graphics processing units (GPUs). The simulation 

environment utilizes the parallel processing power of GPUs to simulate large-scale SNNs. I discuss recent 

improvements in the latest version of CARLsim that include advanced plasticity mechanisms, more 

complete documentation, and new data analysis and visualization tools. Finally, I discuss an automated 

parameter tuning framework that utilizes the simulation environment and evolutionary algorithms to 

tune SNNs. We believe the simulation environment and associated parameter tuning framework 

presented here can accelerate the development of neuromorphic software and hardware applications 

by making the design, construction, and tuning of SNNs an easier task. 

Sek Chai, SRI 

Computational Noise Resiliency in Deep Learning Architectures 

NICE 2015 Workshop was a great success. There were many positive remarks throughout the event 

regarding the technical quality and breadth of the discussion. The credit also goes to the Workshop 

organizers for putting together a strong program. The discussions on brain modeling and connectome 

were good because they added a sense of perspective on how little we understand human cognition. 

One of the focus topics this year is applications. I am glad to see several videos and presentations 

showing neuro-inspired/enabled applications. I have talked to some “new” attendees that these help 

them understand and connect to our work. 
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I presented on the topic of noise resiliency of learning algorithms, to attempt to connect neuromorphic 

research to other computing research topics such as near-threshold, approximate, and fault tolerant 

computing. I conjecture that noise needs to be addressed in architectures with very dense neuron and 

synaptic connections. Furthermore, nanoscale VLSI designs will have issues (e.g. device variations, 

power density, and aging effects), which makes it equally important to study noise. I showed examples 

how we handle sensor noise, and how we already leverage noise in training our deep learning systems 

to improve algorithmic performance. Other speakers have related coverage on noise: Karlheinz Meier 

noted the different noise types considered in hardware design; Xaq Pitkow described a noise correlation 

as a theoretical basis for learning; Randal O’Reilly described error-driven learning using an autoencoder.  

For next year, NICE should continue to cover key topics from theoretical neuroscience to hardware 

design. It would be good to get updates on US-based initiatives from IARPA MICrONS and Cortical 

Processor Algorithm Evaluation efforts. I would like to see this community report on efforts in 

benchmarking and defining key metrics to help evaluate different learning approaches. 

Ralph Etienne-Cummings, Johns Hopkins University 

Seeing with Spikes:  From Motion Detection to Object Recognition 

Visual motion estimation and object recognition are computationally intensive, but important tasks for 

sighted animals. As can be expected, the recognition of fast moving objects is more useful, but also 

much more difficult to compute. Replicating the robustness and efficiency of biological visual 

information processing in artificial systems would significantly enhance the capabilities of future robotic 

systems. Twenty-five years ago, Carver Mead outlined his argument for replicating biological processing 

in silicon circuits. His vision served as the foundation for the field of neuromorphic engineering, which 

has experienced a rapid growth in interest over recent years as the ideas and technologies mature. 

Replicating biological visual sensing was one of the first tasks attempted in the neuromorphic field. In 

this talk we discuss the tasks of visual motion estimation and object recognition *using asynchronous 

spike trains of change events at the retina. We describe the tasks, present the progression of work from 

the early first attempts through to the modern day state-of-the-art, and provide an outlook for future 

directions in the field. In particular, we argue that current frame-based computer vision is anachronistic 

and must be replaced by an even-based approach that more closely matches the information being 

sampled with the computation method. It is not surprising that living organisms also uses event based 

processing to understand their visual world. 

Paul Franzon, NCSU 

Hardware Acceleration of Sparse Cognitive Algorithms  

NCSU is currently conducting a study on the performance and cost of implementing accelerators for 

HTM and related algorithms. The presentation includes the approach and preliminary data. 
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Steve Furber, University of Manchester 

The SpiNNaker Project 

Just two years after the world's first stored program ran its first program at Manchester in 1948, Alan 

Turing published his seminal paper on "Computing Machinery and Intelligence." The paper opens with 

the words: “I propose to consider the question, ‘Can machines think?’”. Turing then goes on to explore 

this question through what he calls "The Imitation Game," but which subsequent generations simply call 

"The Turing Test". 

Despite spectacular progress in the performance and efficiency of machines since Turing's time, we have 

yet to see any convincing demonstration of a machine that can pass his test. This would have surprised 

Turing—he believed that all that would be required was more memory. Although cognitive systems are 

beginning to display impressive environmental awareness, they do not come close to the sort of 

"thinking" that Turing had in mind. 

My take on the problems with true artificial intelligence are that we still haven't worked out what 

natural intelligence is. Until we do, all discussion of machine intelligence and "the singularity" are 

specious. Based on this view, we need to return to the source of natural intelligence, the human brain. 

The SpiNNaker project has been 15 years in conception and 8 years in construction, and is now ready to 

contribute to the growing global community (exemplified by the EU Human Brain Project) that is aiming 

to deploy the vast computing resources now available to us to accelerate our understanding of the 

brain, with the ultimate goal of understanding the information processing principles at work in natural 

intelligence. SpiNNaker is a massively-parallel computer system, ultimately to incorporate a million ARM 

processor cores (the largest machine to date has 100,000 cores) with an innovative lightweight packet-

switched communications fabric capable of supporting typical biological connectivity patterns in 

biological real time. 

Jeff Hawkins, Numenta 

Reverse Engineering the Neocortex: Implications for Machine Learning and Machine Intelligence 

We are making significant progress in reverse engineering the neocortex. I presented a framework for 

neocortical theory called Hierarchical Temporal Memory (HTM). The core tenets of this theory are the 

cortex is composed of hierarchy of nearly identical regions.  Each region learns and recalls sequences of 

patterns. The cellular layers that comprise each region implement sequence memory for different 

aspects of inference and motor generation. All aspects of the theory rely on sparse distributed 

representations. 

As part of HTM theory, I described a detailed model of how a layer of neurons learns sequences. This 

model requires neurons with thousands of synapses arranged on active dendrites, closely mirroring the 

structure of biological neurons. I claimed that neuromorphic hardware intended for machine 

intelligence and cortical modelling must accommodate these more realistic neurons and the higher 

connectivity they require. 
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I presented a research roadmap showing the progress made so far and what remains to be done. All of 

our experiments, software, and documentation are freely available in an open source project called 

NuPIC. All aspects of NuPIC more than doubled over the last year reflecting increasing interest of HTM 

theory. 

I showed diverse applications of HTM technology for automated analytics of streaming data, including 

machine anomaly detection, cyber-security, geo-spatial tracking, and natural language processing. 

We believe we have passed a threshold in understanding how the cortex works.  Machine intelligence 

based on cortical principles is possible in the near future. 

Marwan Jabri, Neuromorphic, LLC 

Biologically-Inspired Unsupervised Learning of Higher Order Visual Features 

An important aspect of machine learning for visual pattern recognition is the understanding of how 

higher order visual feature detectors (tuned processing elements) develop. Understanding how cortical 

areas such as V4, posterior inferotemporal (PIT), and anterior inferotemporal cortices (AIT), could help 

shed some light. 

We present an architecture and unsupervised learning algorithms inspired from the primate visual 

neural processing pathway. The architecture includes a V1 (simple and complex layers), and layers 

representing V4, PIT and AIT equipped with lateral excitatory and inhibitory projections. The V4 layer 

consists of two sublayers, integration and pooling. Hebbian learning occurs in the V4 integration layer, 

PIT and AIT. We show how complex visual features detectors can form in these higher cortical areas, in 

particular, face like tunings are observed after learning in the subsystem representing AIT on images of 

faces. 

We apply the architecture and learning algorithms to the task of face recognition from the LFW and 

proprietary datasets. The output of the AIT layer is used as input features to a two-layer multi-layer 

perceptron trained for labelling. We obtain very encouraging results on fairly challenging recognition 

conditions, which include multiple facial poses, illuminations/brightness, and face rotations, with over 

89% success rate on LFW datasets and 95% on a proprietary dataset. 

Garrett Kenyon, Los Alamos National Laboratory 

Deep, Sparse Representations of Form, Depth and Motion 

 Subtitle: "The 3rd Age of Neural Computing" 

 Sub-subtitle: "A Universal Cortical Processing Module" 

Sparse predictive coding modules have emerged as viable candidates for defining a universal cortical 

processor.  Sparse autoencoders are self-organizing and can explain many of the linear and nonlinear 

response properties of simple cells in the primary visual cortex. Moreover, sparse predictive coding 

modules can be strung together into essentially arbitrary topologies. Here, we demonstrate how sparse 

predictive coding modules can be used to represent form, motion and depth features in a manner that 
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enables subsequent categorization. We use an open source, high-performance neural simulation 

toolbox called PetaVision. In a typical simulation, we use either single images, sequences of video 

frames, or stereo image pairs. A layer of cortical neurons then learns an optimal set of features for 

representing that input as accurately as possible while using as few active elements as possible, a 

process than can be simulated in a neurally-plausible manner using lateral synaptic inhibition. The same 

process is then repeated to learn the receptive field properties of subsequent layers arranged in a 

hierarchical sequence. We then test the resulting sparse representations 3 ways. First, we test for the 

ability of a multi-layer sparse hierarchy to support good classification performance on object detection 

tasks, thereby assessing how the sparse predictive coding module represents form in a viewpoint 

invariant manner. Second, we test for the ability of a multi-layer hierarchy trained on short video 

sequences to enable good discrimination between different types of human actions, thereby assessing 

how a sparse representation of motion enables better discrimination of spatiotemporal patterns. Third, 

we test for the ability of a sparse representations trained on stereo image pairs to reconstruct accurate 

depth maps. Our results illustrate how sparse predictive coding can be applied to a range of visual 

processing modalities. Our results thus support the hypothesis that sparse predictive coding can be used 

to define a universal cortical processing module that can be configured into arbitrary topologies for 

solving difficult classification tasks. 

Konrad Kording, Northwestern University 

At which level do we want to be neuro-inspired? 

When taking inspiration from biology it is important to specify at which level we want to be inspired. I 

argue that one largely neglected level of abstraction is by the joint representation of information by a 

whole group of neurons. This could also be helpful because it may sidestep the problem that a lot of 

findings in neuroscience may not generalize and the problem that computational principles may be in 

conflict with computational principles. For example, fourier transforms can be implemented very rapidly 

in current hardware, so if the biological solution is close to a fourier transform we might rather use the 

idea that can be rapidly implemented. The track record of being neurally inspired beyond rather 

superficial ideas is not very good. However, we may hope that the explosion of new techniques in 

neuroscience may give us another shot at being inspired. 

To make sense of the emerging large datasets we need ways of automatically analyzing them, ways of 

converting them into human communicable meaning. Towards this end I have been working with Eric 

Jonas on automatically classifying cells based on connectomics data. Our idea is to model at the same 

time the distance dependent connectivity and other aspects of the data. We find that the automatic 

technique is not much worse than humans at relevant tasks such as synapse prediction and shows some 

agreement with human anatomists. 

Dhireesha Kudithipudi, Rochester Institute of Technology 

Traversing the Application Landscape of Neuromemristive Computing 

In contrast to conventional computer architectures, the human nervous system is inherently mixed-

signal, massively parallel, approximate, and plastic, giving rise to its incredible processing ability, low 
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power, and capacity for adaptation. We realize this new class of architectures using NeuroMemristive 

systems (NMS), which encompass memristive/CMOS devices for synapses and neurons. NMSs abstract 

the computational principles found in the nervous system rather than mimicking them. In this work, we 

present different spatio-temporal processing applications such as epileptic seizure detection and speech 

emotion recognition. The overall architecture design was based on the echo state network and the 

classification accuracies of these systems are comparable to state-of-the-art software and hardware 

systems, with 3x lower power. The circuit-level implementation costs (power, area, etc.) as well as 

higher-level metrics, such as learning capacity, are compared using both conventional and 

unconventional activation functions. Device models based on experimental data are used to capture the 

non-ideal memristor behaviors, such as bistable non-linear devices. We demonstrate for a speech 

recognition application that inspite of using bi-stable devices, with limited synaptic weights; the 

performance of the NMS is comparable to the performance of a software-based realization. Robust and 

novel methods of training NMS on-chip from different data related to the trained off-chip network are 

proven on early visual system feature detectors. When NMS was tested with Caltech 101 dataset we 

achieved classification accuracy similar to support vector machines. Finally, an NMS based security 

primitive for Keccak algorithm is shown which mitigates side-channel attacks. 

Tai Sing Lee, Carnegie Mellon University 

Neural circuits for learning internal models of the environment 

I advocated and presented a top-down approach to understanding cortical neural circuits based on (1) 

developing computational models that can solve vision problems and (2) training the circuitry of such 

models with stimuli from natural scenes. A key insight from perception is that vision is constructive in 

nature. Many early vision problems, such as 3D shape from shading or from binocular images, can be 

formulated as inferring the internal models and their parameters that can then synthesize images to 

match the input images. An important model in computer vision for solving this class of problems is 

called Markov random field. MRF uses local interaction to mediate contextual information to remove 

local ambiguity. It also explicitly or implicitly generates images synthesized higher order representation 

(e.g. 3D shapes) or transformation (e.g. transform between left eye and right eye images) as a way to 

infer abstract visual concepts such as shapes and depth. A neural implementation of Markov random 

field is Boltzmann machine, which represents the continuous variable at each node of MRF using a 

population of neurons with tunings that tile the domain of the variable to be inferred. Training a 

Boltzmann machine with disparity data derived from 3D natural scenes yielded a connection matrix that 

describes well the functional interaction of disparity-tuned neurons we measured using multi-electrode 

recording in macaque V1. Simulation of such a network model predicted neurophysiological 

observations on how the disparity tunings of V1 neurons sharpen over time, or with an increase in 

stimulus size, and the phenomena of filling-in of surround disparity signals.  This work shows that MRF 

and Boltzmann machine provide a viable model for characterizing and conceptualizing the 

computational neural circuits in the visual cortex. However, I also presented some new predictive coding 

evidence and models that illustrate how interneurons can encode sophisticated compatibility 

constraints beyond what are possible in the pairwise connectivity furnished by the Markov random field 

model or Boltzmann machine.  
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Hai (Helen) Li, University of Pittsburgh 

The neuromorphic computing leveraging emerging devices 

In past years, the development of neuromorphic computing systems has been extensively studied. 

However, conventional CMOS technology approaching the scaling limit is not sufficient to meet the 

requirement of neuromorphic computation systems demanding extremely high level parallel operations 

and large scale storage. The emerging devices that generally feature non-volatility, high cell density, 

nanosecond access time and low operation, instead, demonstrate great potentials. Even thorough, how 

to leverage these devices and maximize their advantages in large scale systems remain unsolved. Some 

key challenges include but not limited to: 1) the feasible device characteristics that can provide 

sufficient design space; 2) the circuit types and structures that can utilize the advantages of emerging 

devices; 3) general or specific architectures that enable the use of neuromorphic circuit components; 4) 

an automatic design flow that is transparent to user; 5) compiler and OS that can seamlessly integrate 

various applications to the emerging devices based neuromorphic accelerators or systems. In summary, 

new devices such as memristors have triggered the rebirth of neuromorphic computing and 

demonstrated its potential and significance in computation intelligence. A holistic scheme integrating 

the efforts on device, circuit, architecture, design automation, compiler, etc. is very necessary to fully 

leverage the advantages of these new devices.  

Karlheinz Meier, Heidelberg University 

Mixed-signal accelerated Systems Progress, Results, Plans 

A physical model neuromorphic system has been developed in the EU BrainScaleS project and is scaled-

up in the framework of the EU Human Brain Project (HBP). The system features local analogue 

computing with binary spike communication via configurable point-to-point asynchronous links in 

continuous time. All time constants are scaled by a factor 10.000, so the system is accelerated and can 

compress a biological day to 10 s in electronics time. Neurons are implemented as Adaptive-Exponential 

(AdEx) neurons with up to 16.000 synaptic inputs. Synapses feature short-term plasticity as well as STDP. 

A maximum of 200.000 neurons and 50.000.0000 synapses are integrated on an 8 inch wafer using 

wafer-scale-integration technology. A total of 20 wafer modules featuring 4 Million neurons and 1 Billion 

synapses are assembled in a phase 1 neuromorphic system in HBP. The system offers a very high degree 

of configurability and a complete software package for non-expert users. 

The main objective of the accelerated approach is to evaluate large parameter spaces through rapid 

prototyping and to study plasticity and learning processes, which are otherwise inaccessible. 

Several experiments have already been carried out. An implementation of the insect olfactory system 

performing multivariate data analysis demonstrates the advantages of neuromorphic computing in a 

single experiment. The circuits perform as good as classical machine learning implementations but 

consume a Million times less energy than conventional computers and converge 10.000 times faster 

than biological implementations. Also, the implementation uses elements with a large variability of 

typically 20%, which is compensated by neuron populations. A new development has shown that 

networks of point neurons can represent probability distributions in any space of binary random 
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variables and perform stochastic inference in this space. Any type of graphical model can be transferred 

to Boltzmann machines. 

Current improvement plans include the implementation of structured neurons with branching dendrites, 

dendritic spikes and back-propagating action potentials. Another improvement is realising a plasticity 

processor that has access to internal and external signals to control the network structure on-the-fly. 

The capability to implement structural plasticity is of particular importance for the HTM model. 

A collection of publications describing the system and the experiments performed so far can be found 

on this website: http://www.kip.uni-heidelberg.de/user/meierk/research/publications 

Murat Okandan, Sandia National Laboratories 

Neuro-inspired Computational Engines: Beyond von Neumann/Turing Architecture and Moore’s Law 

Limits 

As we reach the performance limits of conventional computing approaches, neuro-inspired computing 

presents an attractive development path for continuing to improve our computing capabilities, as well 

as enabling new data analysis, prediction and control capabilities. How information is represented, 

processed, stored and recalled in these new systems, namely a sparse, spatio-temporal, hierarchical 

representation scheme, is at the core of this new approach, in contrast to symbolic representation and 

manipulation in conventional computing systems. By leveraging current computing systems, emerging 

neuromorphic computing platforms, neuro-inspired algorithms, novel devices and insights from 

neuroscience, it is expected that these new systems can be built, tested and improved at an accelerating 

pace. Some of the critical applications that will drive maturation of the first instances of these platforms 

exist in the academic, commercial and government sector, which will provide opportunities for rapid 

development of capabilities with the required coordination. 

Randal O’Reilly, University of Colorado, Boulder 

Biologically-based Error Driven Learning in Thalamocortical Circuits 

The question of whether the brain uses something like error backpropagation to learn has been fraught 

with controversy since the algorithm was developed in the 1980’s. Given its impressive computational 

power, which is being newly re-appreciated, and some promising initial progress, I have been working 

on resolving three major biological problems: (a) How to propagate the errors? (b) How can local 

synaptic mechanisms implement the proper learning rule? and (c) Where do the supervised target 

values come from? In 1996, I showed that bidirectional connectivity can propagate errors in a very 

natural and automatic manner, which closely approximates the backpropagation error gradient. A few 

years ago, I showed how a STDP-based learning mechanism produces an appropriate synaptic learning 

dynamic. Currently, we are leveraging certain properties of the thalamocortical circuit to implement 

hierarchical auto-encoder networks that could bootstrap a full solution to the problem of where the 

target values come from. This new framework also includes predictive learning over time, and initial 

results show that this learning in the early visual pathway can improve figure-ground discrimination in 

cluttered visual scenes. More generally, it has been argued that bidirectional connectivity is essential for 
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consciousness, and a number of associated functional benefits, and our models are the only high-

performance object recognition models that incorporate full bidirectional connectivity and associated 

constraint satisfaction dynamics. All of this work takes place within a unified biologically-based cognitive 

architecture called Leabra, which we think provides a compelling balanced model of learning and 

processing in the brain. 

Xaq Pitkow, Rice University 

How can we know if the brain is doing a good job? 

To understand and emulate the brain, we need to explain both how sensory signals drive neural 

responses (encoding), and how neural responses drive behavior (decoding). Models of encoding have 

grown in sophistication, while models of decoding have lagged behind, considering only linear readout 

of neural activity. Since these models guide our data analyses, we have been stuck with limited options 

to analyze experimental data. The standard data analysis method boils down to computing linear 

correlations between the choices of a behaving animal and its neural activity. This is a reasonable 

measure for simple tasks and the right brain areas, where the mean activities of neurons encode the 

relevant task variables. Indeed, recent theoretical work shows how to use this measure to infer a linear 

readout that explains the animal’s behavior. However, for natural conditions and natural tasks, this is 

not possible: mean neural responses are confounded by task-irrelevant variables, so those means do not 

provide information about the task. We show how this induces a nonlinear code. Here we introduce a 

new way of thinking about decoding that is appropriate for these more challenging, nonlinear natural 

tasks. This comes with a practical experimental test of the quality of an animal’s nonlinear decoding 

strategy. When we apply this test to neural responses recorded from primate visual cortex, we find 

intriguing evidence that animals are using efficient nonlinear decoders. Knowing the nonlinear code is a 

central component of extracting algorithms for neuromorphic computation, so these results provide a 

helpful tool in understanding when we have identified the relevant computations in the brain. 

Fred Rothganger, Sandia National Laboratories 

Can memristors learn? 

My presentation consisted of three unrelated ideas for consideration by the community: 

1. Cybernetics should be the framework for a "grand unified theory" of the brain -- The field of 

Cybernetics proper has been developing theory for the last 70 years on many themes that come up 

in our discussions. It would behoove us to be aware of the framework that already exists. Why are 

communication and control important concepts for a theory of the brain? At the cellular level, a 

living system concerns itself with regulating the production of various molecular products. These in 

turn form a network of interactions that adapt the behavior of the system to the environment, thus 

sustaining the organism. Molecular communication between cells enables multicellular organisms, 

and ultimately brains. Our brain processes signals and computes actions using a large number of 

interacting elements, and its goal is also to sustain the existence of the organism (or, some may 

argue, the species). 

2. The backpropagation algorithm is not viable on a memristor crossbar -- We measured a TaOx 
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memristor on the bench using random-pulse sampling, and used the resulting data in a table-lookup 

("non-parametric") style emulation. The Backprop algorithm required very finely controlled voltage 

pulses right at the programming threshold of the device. The expected programming noise was 

orders of magnitude larger than the desired step size. We extrapolate that any algorithm requiring 

small finely-controlled steps will be unsuitable. We proposed a random walk method, whimsically 

named LOTTO (Lazy Optimization Through Tesselated Oversampling), which more closely fit the 

characteristics of the memristor. I noted that Dhireesha Kudithipudi's earlier talk mentions other 

algorithms which cooperate with the characteristics of memristors and may be much more effective 

than random walk. 

3. Use N2A to write neural algorithms -- N2A (Neurons to Algorithms) is a purely declarative language 

(comparable to NeuroML and NineML) for describing large dynamical systems. It is object-oriented, 

in the sense that the user describes classes of components which get instantiated at runtime, as 

opposed to describing specific instances of components (contrast with Simulink, PowerSim, VinSim, 

etc.) It represents neural components in an ontological structure, much like classic object-oriented 

programming languages (C++, Java, Smalltalk, etc.) It has concepts like inheritance and inclusion, 

with well-defined rules for combining models into larger systems. Our goal is ultimately to write a 

model of the whole brain, as a community effort. 

Catherine Schuman, University of Tennessee, Knoxville 

A Programmable Array of Neuromorphic Elements 

Neuroscience-inspired dynamic architecture (NIDA) networks are spiking neural networks with three 

main features: very simple neuron implementations (with respect to biological neurons), synapses that 

have programmable delay lines and thus have memory, and optimization of structure and parameters 

using evolutionary optimization. NIDA networks have been successfully designed for applications in 

control, anomaly detection, and classification. Dynamic Adaptive Neural Network Arrays (DANNAs) are 

hardware implementations of NIDA networks, currently implemented on FPGAs. DANNAs are arrays of 

programmable neuromorphic elements, where each element may be programmed as a neuron, 

synapse, or connector. This programmability allows for various network structures (various numbers of 

neurons and synapses and various connectivity patterns) to be implemented on DANNAs. We are 

creating a software development kit that will interact with DANNA networks in hardware and will 

include user interface, visualization, array control, array interface, and array monitoring capabilities. We 

are also developing a VLSI implementation of DANNA networks that will allow for larger array sizes, 

lower power consumption, higher clock speeds, and more advanced monitoring capabilities than the 

FPGA implementations. We also plan to implement on-line learning mechanisms that allow for 

parameter and structural evolution in DANNA networks in hardware. 

Lloyd Watts, Neocortix 

Event-Driven Simulation of Spiking Neural Networks 

Abstract:  Event-Driven Simulation of Spiking Neural Networks with point-neuron primitives and 

constant-current synaptic pulses is capable of simulating realistic spiking neural dynamics, provided that 

these primitive elements are suitably combined to make realistic composite neurons, and provided that 



 

25 
 

the synapse primitive is capable of representing a summating state variable. We give examples of 

adapting tonic bursting neurons (modeling Calcium-dependent Potassium Channels), the full set of 

Izhikevich benchmark neural patterns, nonlinear propagation of Sodium spikes in a Dendritic Tree, and 

Chaotic Spiking behavior. Compared to differential equation solving methods, event-driven simulation is 

extremely fast (even faster with GPU support in modern implementations like CARLsim), and has no 

unwanted synchronization artifacts associated with overly coarse choice of integration time-step in 

differential equation methods. Event-driven methods are useful both for very fast simulations and may 

also be suitable for direct implementation on multi-processor hardware such as SpiNNaker. 

Ken Whang, NSF 

Neuro-inspired computing at NSF 

NSF has broad interests at the intersection of brain and computing research. This increasingly rich space 

of interactions includes work focused on brain-like or brain-enabled understanding of machines, and on 

machine-like or machine-enabled understanding of brains. Productivity of these interactions depends on 

deep understanding of what is known or knowable, a good sense of what is useful and feasible to 

abstract out, and ongoing determination of what is helpful in principle and in practice. NSF has been 

actively seeking community input to help inform its efforts in this area.  Funding opportunities include 

interdisciplinary programs (e.g., Integrative Strategies for Understanding Neural and Cognitive Systems) 

and disciplinary programs primarily within the CISE and Engineering directorates. More information may 

be found under the Funding tab at http://www.nsf.gov/brain.  

Winfried Wilcke, IBM 

The IBM Cortical Learning Center  

The talk will give an overview of the new IBM Cortical Learning Center CLC. It will complement existing 

project in IBM Research by its strong focus on learning, especially unsupervised and continuous on-line 

learning. The underlying technology is the Hierarchical Temporal Memory model of the neo-cortex, 

which has been pioneered by Jeff Hawkins and his company Numenta and which is the subject of 

collaboration between IBM Research and Numenta. The talk will not give a detailed overview of HTM, 

because that is covered in an earlier talk in the Workshop, but it will describe the motivation for 

selecting HTM and outline the research direction for the CLC, which includes continued development of 

the HTM algorithms, software implementations, applications and HTM specific hardware. Some 

applications will be demonstrated as videos and the saccadic vision application, which is under 

development, will be discussed in some detail.  

Alan Yuille, UCLA 

Complexity and Compositionality 

This talk introduces compositional models of visual objects. We illustrate these models on simple 

datasets demonstrating their ability to do unsupervised learning in presence of background clutter, to 

discover multiple object classes, and to learn from a small numbers of examples. We describe a 

hierarchical visual architecture which enables multiple object classes to be efficiently stored and rapidly 

http://www.nsf.gov/brain
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accessed by a bottom-up and top-down inference algorithm. The objects are represented in a 

hierarchically distributed manner in terms of parts and subparts, which are constructed recursively by 

part-subpart compositions. Part sharing between different objects yields efficiency in representation 

and inference. Parts are represented more coarsely at higher level of the hierarchy, so that the upper 

levels give coarse summary descriptions (e.g., there is a horse in the image) while the lower levels 

represents the details (e.g., the positions of the legs of the horse). This hierarchically distributed 

representation obeys the executive summary principle, meaning that a high level executive only 

requires a coarse summary description and can, if necessary, get more details by consulting lower level 

executives. Theoretical analysis shows that this architecture can yield exponential gains in terms of 

representation and inference.  
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Appendix E: Website Data for nice.sandia.gov  

VISITORS* PAGE VIEWS* SESSIONS* 

9,062 
Avg/day: 20 

44,625 
Avg/day: 100 

25,001 
Avg/day: 56 

The total number of unique visitors to 
the site 

The total number of pages viewed by 
all visitors 

The total number of visits to the site 
by new and returning visitors 

 

*Time period: January 1, 2014 – March 20, 2015

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Percentage of visitors by country (2014)  

50.2%    United States

10.2%    China

4.2%      Germany

3.4%      France

2.6%      United Kingdom

2.4%      India

2.1%      Unavailable

2.0%      Canada

1.8%      Japan

1.7%      Russia

19.3%    Other


